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ABSTRACT 

The thin f o i l  ionic beam technique was used t o  produce a 

beam of multiply ionized and excited oxygen ions. 

produced by col l is ions i n  the f o i l  were detected by wavelength 

measurements of the  emitted spec t ra l  l ines  as recorded on photo- 

graphic plates .  Excitation functions of various levels  were ob- 

tained from the spectral  l ines using microdensitometer techniques. 

It w a s  found tha t  populations agreed within experimental error  

with theore t ica l  l i n e  strengths. 

excited levels do not obey a Boltzmann distribution. Excitation 

functions were found t o  reach peaks at pa r t i c l e  energies of about 

0.50 MeV i n  0 I1 and 0.63 MeV i n  0 111. 

Excited levels  

?€owever, the populations of t he  

vii 



I. INTRODUCTION 

The main sources of excited par t ic les  previously used fo r  

spectroscopic investigations of atomic properties have been flames, 

axcs, sparks, discharge tubes and plasmas. 

t h in  f o i l s  used as targets for ionic beams could be used as a spec- 

troscopic source. The th in  foil technique has the following advan- 

tages : 

Bashkin’ proposed tha t  

1. 

2. 

3. 

4. 

5 .  

The spectra which r e su l t  from photon emission in  the d e c g  of 

the excited levels  are time-resolved. 

The only mode of decw is spontaneous emission of a photon 

since the pa r t i c l e  density in  the beam and the  ambient vacuum 

are  suf f ic ien t ly  low t o  insure no interaction between parti- 

cles. Further, recombination l i nes  are not observed because 

the  electron density i n  the beam is low. 

Since an accelerated ionic beam is the spectroscopic source, 

the common techniques of e l ec t ros t a t i c  or  magnetic analysis of 

the  beam insure a chemically pure source. 

Ionizations and excitations of beam particles by the  f o i l  de- 

pend on the energy of the incident pa-rticles, and it is possi- 

ble  t o  obtain high ionizations by using beam energies of a few 

MeV. 

Essentially all the chemical elements can be studied under I- 

dent ical  exci ta t ion conditions. 

1 
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The excitation function of an excited l eve l  is defined as 

t he  r e l a t ive  i n i t i a l  population of the excited l eve l  as a function 

of energy of the  incoming par t ic les .  

flames, a r c s ,  sparks and plasmas, l eve l  populations are proportion 

al t o  exp (- G/kT), where E+, is the  energy of the n ' th  excited le- 

vel ,  k is Boltzmann's constant, and T is the absolute temperature 

of the  source.a Although it is not possible t o  assign a tempera- 

ture t o  the beam par t ic les ,  it is of in te res t  t o  compare the l eve l  

populations as flulctions of bean energy f o r  foil-excited par t ic les  

w i t h  the level populations as functions of temperature f o r  other 

techniques. 

For thermal sources such as 



11. EXPERIMENT 

A beam of singly-ionized, diatomic oxygen molecules w a s  ac- 

celerated t o  the desired energy using a 2 MV Van de G r a a f f  acceler- 

a tor .  The beam w a s  passed through an analyzing magnet which direc- 

ted the  par t ic les  with t he  proper p/e r a t i o  in to  the  ta rge t  chamber 

and through a th in  carbon fo i l .  I n  the above, p i s  the momentum of 

the par t ic les  and e is the net electronic charge. 

the f o i l  reduced the  oxygen molecular ion beam t o  a monatomic beam, 

and the oxygen par t ic les  emerged from the f o i l  with some dis t r ibu-  

t ion  of ionization and excitation. 

by spontaneous emission of a photon; the photons were dispersed 

w i t h  the  f/0.8 stigmatic Meinel spectrograph and were recorded on 

photographic plates.  

Exposure times ranged from 5 minutes t o  90 minutes with beam cur- 

ren ts  of about 0.3 pamps. Due t o  the use of glass lenses i n  the 

opt ica l  system and t o  the sens i t i v i t i e s  of the photographic plates, 

the wavelength region examined was  from 3600 1 t o  4700 A. 
perimental arrangement i s  shown i n  Fig. 1. 

Collisions in 

The excited par t ic les  decayed 

Kodak lO3a-0 spectroscopic plates were used. 

The ex- 

Since the  Meinel spectrograph is a stigmatic instrument, 

each spec t ra l  l i n e  appears as an image of the sl i t  of the spectro- 

graph, with each point of the l i n e  corresponding t o  a point i n  the 

beam. The l ines  w i l l  be darkest at the f o i l  end and w i l l  decrease 

i n  in tens i ty  along t h e i r  length due t o  the exponential decay of the 

ions and t o  the stigmatic property of the spectrograph. Thw 

3 
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measurement of the  density of a spec t ra l  l ine  at  some distance from 

the f o i l  end of the l i ne  corresponds t o  a measurement of the  number 

of photons emitted at some distance downstream from the f o i l .  

The re la t ive  populations of the various levels were obtain- 

ed from the photographic plates by determining the  re la t ive  powers 

of the  spectral  l ines .  

must be measured from the  spectral l ines ,  it w a s  necessary t o  re- 

l a t e  density t o  power us ing  black-body continuum plates.  A tung- 

s ten filament lamp operated at 1950'K f 50°K w a s  used as the  black- 

body source, and a step-density f i l t e r  w a s  used t o  obtain various 

densit ies.  The exposure times of the black-body plates  were the  

sane as the  exposure times of the  corresponding spectral  plates.  

Figure 2 shows a spectral  plate taken with an &+ beam at 1.0 MeV 

and the  corresponding black-body plate .  

Since density ra ther  than emitted power 

To compare spectral  plates taken with different  beam cur- 

rents  and beam energies, it was necessary t o  determine the  number 

of par t ic les  passing through the f o i l  fo r  each exposure. This w a s  

done by integrating the beam current collected by a shielded Fara- 

day cup, and recording the t o t a l  charge fo r  the plate.  

charge could then be converted t o  the t o t a l  number of par t ic les  

passing through the  f o i l  by using measurements of r e l a t ive  charge 

state populations in the  beam as a function of beam energy. 

To aid i n  wavelength determination, 811 iron-argon compari- 

The t o t a l  

3 

son spectrum w a s  taken on each s p e c t r a  p l a t e  and on each black- 

body plate as shown i n  Fig.  2. The wavelengths of the  s p e c t r a  
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l ines  were measured t o  an accuracy of f 0.5 A using a Grant Compar- 

a tor ,  and the t ransi t ions giving the spectral  l ines  were then de- 

termined using tables  of previously observed transitions' 

wavelengths computed from energy leve l  tables.  In  Tables 1, 2, 

and j, the observed spectral  l ines a re  numbered and wavelengbhs and 

t ransi t ions of the l ines  are  l is ted.  

0 

and 

5 



111. ANALYSIS 
b 

Since the  spectral  l ines are time resolved, it is  possible 

t o  determine populations of the levels soon a f t e r  the  ions m e  ex- 

c i ted  in  the f o i l  by measuring re la t ive  power a t  the f o i l  end of 

the spectral  l ines .  

l ines  were made w i t h  a Hilger-Watts densitometer. The s l i t  width 

of the densitometer corresponded t o  a distance along the  beam of 

1.2 m and the  measurements were made with the center of the s l i t  

at a position on the  l i n e  which corresponded t o  a beam distance of 

1.0 mm from the f o i l .  

Fig. 3. For the following reason, no correction w a s  made for  the 

error  due t o  decay of the beam i n  th i s  distance. 

spectral  l ines  shows tha t  on several l ines  the change i n  emitted 

power does not follow an exponential decay u n t i l  the  beam par t ic les  

are  as far as 1.5 mm from the f o i l .  Cascading from higher levels 

is known t o  be present in  many cases and is probably the  source of 

the  d i f f icu l ty .  

s a r y  t o  correct for t h i s  problem. 

Measurements of the densit ies of the spectral  

A typical densitometer scan is shown in  

Study of the 

Much more extensive measurements would be neces- 

The expression used to  determine r e l a t ive  populations from 

t h e  measured densit ies of the spec t ra l  l i nes  is derived below. 

Consider a spec t ra l  p la te  taken at a beam energy E and exposed f o r  

a time t with integrated beam charge Q. A given level with ini t i -  

al population N can i n  general decqr t o  several  lower levels with 

6 
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each decay being characterized by i ts  wavelength A and spontaneous 

emission coefficient A .  These various decays can frequently be re- 

solved on the spectral  plates ,  and the population of the  upper lev- 

e l  can be determined from the  examination of a single spectral  

l i ne .  In such a case, t h e  population N is  given by 

where P i s  the power of t h e  l ine,  h is the  wavelength of the l ine ,  

h is Planck's constant, c i s  the speed of l i gh t ,  and A is the spon- 

taneous emission coefficient for the t rans i t ion .  

In Eq. (l), all quantit ies are  constant fo r  a given tran- 

As indicated previously, density of the  s i t i o n  except the  power P. 

spec t ra l  l i n e  must be direct ly  measured rather  than power, and the 

emitted power is  then obtained using the black-body continuum 

plates .  

t ed  t o  the density by 

T h i s  w a s  done as follows: the power of the  l i n e  i s  re la-  

p H(h, t ,  geom) 
t P =  

where p i s  the  density of t he  l i n e  at the f o i l ,  t is the exposure 

time, and H(A, t, geom) i s  a function which includes corrections 

f o r  the  geometry of t he  system and f o r  plate exposure characteris- 

t i c s .  

p l a t e  t o  be exposed i n  s t r i p s  of different  density, where each 

s t r ip  covered the  en t i re  wavelength region of the  plate. 

er emitted by the black-body is re la ted  t o  the  plate density of a 

On the  black-body plates,  the step-density f i l t e r  caused the 

The pow- 
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given s t r i p  at a given wavelength by 

where Po(A) is the power of the black-body at wavelength A, co(h )  

is  the transmission of the corresponding s tep  of the f i l t e r ,  po(A) 

is the density of the s t r i p  at  A ,  and H is the same function as i n  

EQ. (2). 

be a r ~  interpolated value of  the transmission such tha t  the density 

of the black-body continuum i s  equal t o  the density of the spectral  

l ine.  

from Eqs.  (2) and (3) one obtains 

From the  densit ies po(h)  fo r  different  s t r i p s ,  there w i l l  

This value of the transmission w i l l  be denoted by 6 .  Then 

Substi tuting fo r  P i n  Eq. (1) gives the re la t ive  population 

P o p )  c 
hc A N =  (5) 

Since the  average number of par t ic les  passing through the  

f o i l  varied from pla te  t o  plate, it w a s  necessary t o  normalize the  

initial populations t o  the  number of par t ic les  passing through the  

f o i l ,  and t o  the veloci t ies  of t h e  par t ic les .  In t h i s  experiment 

t he  number of par t ic les  passing through the  f o i l  was determined in- 

d i rec t ly  by measuring the  number of charges collected by t he  Fara- 

aaJr cup. Let  n be the  

f o i l  for one exposure. 

number of par t ic les  which pass through the  

L e t  1, indicate the  charge states of t he  
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ions, s o  4 = 0 represents neutral  par t ic les ,  a E 1 represents sing- 

l y  ionized par t ic les ,  etc.  For a given energy E ,  a cer ta in  frac- 

t i o n  FA of the beam part ic les  w i l l  be in  charge state A ,  and the 

number of par t ic les  passing through the f o i l  and being ionized into 

charge s t a t e  4 w i l l  be nFa. The net charge collected w i l l  be 

Thus, 

= C 4 F i  Q 
a 

(7) 

It should be mentioned t h a t  the method used above fo r  determining 

the  number of par t ic les  is not the most convenient method. A more 

straightforward method would be t o  measure the  integrated charge 

with the f o i l  out of the  beam, and with the f o i l  i n  the  beam. 

Since the integrated charge Q w i t h  the f o i l  out i s  re la ted t o  the 

number of par t ic les  by 

Q = n e ,  (8) 

and since the  r a t i o  of integrated charge with f o i l  out to charge 

with f o i l  in  is a constant f o r  a given f o i l  and given energy, the  

average number of par t ic les  passing through the  foil per second is 

easily determined from the  t o t a l  integrated current with the  f o i l  

in the  beam. 
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The effect  of different beam veloci t ies  can be seen from 

the  following. 

given level .  

dx is l e s s  than one tenth of a mean decay distance. 

c i t y  of the bean i s  vl, the  number of atoms or ions observed t o  de- 

cay at the f o i l  by a given t ransi t ion is 

Assume N particles are  i n i t i a l l y  excited into a 

Let the l i n e  be examined over an in te rva l  dx, where 

If the velo- 

Now consider a beam of velocity v2 bu t  assume the par t ic le  flux 

through the  f o i l  is such t h a t  there are s t i l l  i n i t i a l l y  N par t ic les  

excited into a given level.  

w i l l  be 

Then the number of decays observed 

dx 
dN2 = N A -  v2 

Thus, 

Including the normalizations fo r  the  number of par t ic les  i n  

the  beam, and for the  velocity of the par t ic les ,  one obtains f o r  

t he  normalized power, 

and f o r  t h e  normalized relat ive populations 
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Table 4 gives the values obtained from Eq. (12) f o r  the normalized 

powers, and Table 5 gives the values of the re la t ive  populations 

calculated from Eq. (13). The values of the  emission coefficients 

were obtained from tables of experbentally-determined t rans i t ion  

probabili t ies.  6 

In  order t o  determine the errors  i n  the measured values of 

the  emitted powers, two separate exposures made with the same beam 

enerQy were compared. From th i s  comparison, it w a s  found tha t  the 

errors  are  l e s s  than 25%. I n  calculating re la t ive  populations, the 

t rans i t ion  probabili t ies used were given as being correct t o  within 

2%. Thus, the populations should be correct t o  within 4%. 
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I V .  RESULTS 

From Tables 1, 2 and 3 ,  one f i n d s  t h a t  80 l ines  were ob- 

served i n  the wavelength region $00 $- t o  4700 i. 
these t ransi t ions were observed i n  0 11, w i t h  only three multiplets 

observed i n  0 111, and one multiplet observed i n  0 IV. 

no t ransi t ions observed which could be def ini te ly  ident i f ied as 

coming from 0 I or 0 V. 

charge s t a t e  population of 0 I at low energies i s  over 1% of the 

t o t a l  beam .3 

The majority of 

There were 

This w a s  unexpected for  0 I since the 

From the  data it does not appear t ha t  f o i l  excited par t i -  

c les  obey a Boltzmann distribution. 

degenerate" s t a t e  populations obtained by dividing the leve l  pop- 

l a t ions  by (2s + 1)(2J + 1). 

dis t r ibut ion s i m i l a r  t o  a Boltzmann dis t r ibut ion.  one would see an 

exponential decrease i n  populations in a chrsge s t a t e ,  and between 

charge s ta tes .  This definitely i s  not observed from these data. 

I n  Table 6 ,  the "non-degenerate" s t a t e  populations are  given for 

oxygen par t ic les  at 0.50 MeV. 

This can be seen from "non- 

If the f o i l  excited par t ic les  had a 

From Tables 1 through 4 it is seen tha t  i n  almost a l l  mul- 

t i p l e t s ,  the  most powerful lines observed are  those corresponding 

t o  the  higher J t ransi t ions with AJ = AL. 

ly with theoret ical  calculations of l i n e  strengths, assuming ZS 

coupling. 

ted theoret ical ly  since l i n e  strength is the m r e  fundamental 

This agrees quali tative- 

Line strengths rather than powers are  generally calcula- 

12 
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The l i n e  strength f o r  a t rans i t ion  from leve l  a t o  leve l  quantity. 

b is defined as 

4 

where (a \PI 8 )  is  the matrix element fo r  a dipole t rans i t ion  from 

l eve l  a with quantum numbers CY t o  leve l  b w i t h  quantum numbers 8.7 

The emitted power P i s  related t o  the  l i n e  strength S(a, b) by 

It is  of in te res t  t o  compare powers of l ines  originating on the 

same level ,  and t o  compare populations of the l eve l  as calculated 

from these powers. 

each pair originates on a single level,  and in  Table 7 the  r a t io s  

of the powers of these lines are compared with ra t ios  of l i n e  

strengths. This comparison i s  independent of the population and 

thus does not include the  errors introduced by the t rans i t ion  prob- 

a b i l i t i e s .  

t he  r a t io s  of l i n e  strengths within experimental error ,  

Table 5 ,  the  agreement between populations calculated from the 

pa i r s  of l ines  is  not found t o  be as good, although i n  two of the  

There are  four pairs  of l ines  observed where 

F r o m  t h i s  table one sees t h a t  the powers do agree with 

From 

cases, they do agree within experimental error .  

The dependence of the  populations of the  levels  on energy 

can be seen from Table 3. 

levels  in 0 I1 increase with energy from 0.20 MeV per pa r t i c l e  t o  

I n  par t icular ,  the  populations of t he  
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about 0.50 MeV per pa r t i c l e  and then decrease, with about a factor  

of 2 change i n  population. 

at about 0.63 MeV per par t ic le ,  where they are  about three times 

the  populations at 0.20 MeV. 

ta ined from l ines  3, 15, 29 and 43 ase shown as a function of beam 

energy. 

For 0 111, the peak populations occur 

In Figs. 4 through 7, populations ob- 



V. CONCLUSION 

Using the t h i n  f o i l  technique f o r  producing excited levels ,  

it is  found tha t  the different J levels  i n  a multiplet are  popula- 

ted as expected from the calculated l i n e  strengths,  and t ha t  ra t ios  

of powers agree within experimental error  with r a t io s  of l i n e  

strengths f o r  t rans i t ions  from a s ingle  level.  However, the popu- 

la t ions of the  levels do not follow a Boltzmann distribution. 

Populations of the levels show a dependence on beam energy 

with the populations i n  0 I1 and 0 I11 reaching a maximum at about 

0.50 MeV and 0.63 MeV per par t ic le  respectively. The maximum var -  

ia t ions in  populations i n  the energy range investigated are  about a 

factor  of two fo r  0 I1 l ines  and a factor  of three f o r  0 I11 lines .  



Table 1. Wavelengths and Transitions of Lines Observed in  
Ionization State o 11. 

- 
Line 
No. - 

79 

78 

77 

80 

51 

54 

50 

I 2  

9 

5 

62 

63 

69 

29 

27 

25 

34 

33 

32 

32 

36 

Measured 
Wavebengtk 

(A) 

4650.4 

4643.1 

4670.3 

4662.5 

4351.0 

4368.4 

4366.2 

3750.5 

3728.1 

3713.7 

4416.2 

4418.5 

4453.3 

3974 4 

3955.0 

3946.0 

4077.0 

w3.3 

4071.1 

4071.1 

4085.1 

Identifiec 
dave Iengtk 

(A)  

4650.34 

4643.01 

4670.05 

4662.84 

4350.66 

4368.13 

4346.65 

3750 55 

3728 0 39 

3713 77 

4416.12 

4418.20 

4453.71 

3974 39 

3955.48 

3946.16 

4077.W 

4073.30 

4071.04 

4070 -79 

4086.27 

%Uti- 
p le t  

1 

1 

1 

1 

2 

2 

2 

3 

3 

3 

5 

5 

5 

6 

6 

6 

10 

10 

10 

10 

10 

Trans it ion 
Final I n i t i a  

~ 

4 4 0  

3s 4P - 3p 'Do 

3s 4P - 3p 'Do 

3s 4P - 3p 4D0 

3s P - 3P D 

4 3s P - 3p "PO 

3s 4P - 3p 4P0 

3s 4P - 3P 4s0 

3s P - 3p +so 

3s P - 3p 4s0 

4 4 0  3s P - 3P P 

4 

4 

2 a o  

3s 'P - 3p aDo 

3s P - 3p "Do 

3s P - 3p D 

a 

3s 'P - 3P Po 

3s P - 3p "PO 

2 a o  3s P - 3P P 
a 

4 0  3p D - 3d 'F 

3~ D - 3d F 

3P 4D0- 3d 4F 

3P D - 3d 4F 

3p 4D0- 3d 'F 

4 0  4 

4 0  



Table 1--Continued 

- 
Line 
No. - 

35 

22 

2 1  

21 

20 

75 

76 

76 

52 

52 

23 

24 

23 

41 

39 

38 

60 

55 

61 

53 

68 

43 

Measured 
davelengtk 

( i) 

4079 7 

3908 -2 

3883.6 

3883.6 

3849.5 

4592.1 

4597.2 

4597.2 

4352.5 

4352 5 

3912 -8 

3920 1 

39l2.8 

4155.3 

4120.5 

4098.1 

4397 4 

4370.5 

4409.6 

4361.5 

4449.2 

4191.0 

Ident i f  iec 
Wavelengtk 

( 9 
-~ 

4080.02 

3908 55 

3883.54 

3883.29 

3848.98 

4592.46 

4597 2 8  

4597 49 

4352 50 

4352 069 

3913 07 

390.37 

3913.22 

4154.45 

4EO. 38 

4098 39 

4397 19 

4370.53 

4407.26 

4360.58 

4449.59 

4190.97 

ululti- 
plet 

10 

11 

11 

l.2 

I2 

15  

15 

15 

16 

16 

17 

17 

17 

19 

20 

20 

26 

26 

26 

26 

35 

36 

Transit ion 
Final  I n i t i a l  

3p 'Do - 3d 4 F 

3p "Do - 3d 4 P 

3p 'Do - 3d 4 D 

3p 'Do - 3d 'P 

4 3P 4D0 - 3d D 

3 s t  "D - 3p1 "F0 

3s'  2D - 3pl "f 
3s' 2D - 3p1 "F0 

3s' aD - 3p1 "Do 

3s' 'D - 3p1 "D" 

3st 2D - 3p1 aPo 

1 a o  

1 2 0  

3s' "D - 3p P 

3st "D - 3p P 

3p 4P0 - 3d 4 D 

4 0  3p P - 3d 4P 

4 0  4 3~ P - 3d D 

3p 2Do - 3d 'D 

3p "Do - 3d "D 

3P 2Do - 3d aD 

3p 'Do - 3d "D 

3P ' "f - 3d1 aF 

3p' 'f - 3da aG 

17 

Jf - Ji 



d o 0  

18 

Table 1- -Continued 

- 
Line 
No. - 
42 

43 

28 

r 6  

37 

38 

31 

47 

45 

73 

48 

48 

48 

45 

46 

46 

46 

49 

48 

30 

30 

30 

--- 
Me as ured 

Waveiengtl 
( A) --- 

4186.6 

4191.0 

3963.6 

3949 6 

4090.4 

4098.8 

4066.0 

4305.0 

4278.0 

4470.3 

4316.3 

4316.3 

4316.3 

4278.0 

4285.0 

4285 .o 

4285.0 

4342.4 

433.6.3 

4061.9 

4061.9 

4061.9 

I 

rdent i f  iec 
davegengtk 

(A) 
.I_I__ - 

4186.62 

4190.76 

3964.18 

3950.51 

4090.44 

4098.43 

4066.22 

4305. d+ 

4277.90 

4470.50 

4316.48 

4316.67 

4316. '77 

4a7.97 

4284.16 

4284.33 

4284.95 

4343.23 

4316.57 

4061.67 

4062.20 

4061.67 

- 
Yulti- 
plet 
-.-- 

36 

36 

43 

43 

48 

48 

50 

54 

54 

59 

64 

64 

64 

67 

67 

67 

67 

77 

79 

97 

97 

97 

Trans i t i o n  
Final  Initial 
~ ---- 

3p' 2Fo - 3d1 a G  

3p' 'F0 - 3d1 2G 

3P "Do - 4d 2p 

3pt 'Do - 4d 'p 

3d 4F - 4f 'Go 

3d F - 4f 4G0 

3d F - 4f 4F0 

3d P - 4f 'Do 

3d 4P - 4f "Do 

3pt 'Po - 4d "D 

3d 'D - 4f "Do 

3d *D - 4f *Do 

3d D - 4f 'Do 

3d D - 4f 'FO 

3d D - 4f 4F0 

3d 4D - 4f 'FO 

3d D - 4f 4F0 

3d 'F - 4f 'Go 

3d 2F - 4f aFo 

1 2 0  3d"F - 4f G 

3d"F - 4fl ' G o  

i a o  3 d * a F  - 4f G 

4 

4 

4 

4 

4 

4 

4 

Jf - Ji 



Table 1--Cont inued 

Line 
No. - - 

44 

57 

57 

57 

40 

71 

74 

71 

72 

73 

Measured 
Waveiength 

( A )  

4255.6 

4380.7 

4380.7 

4380.7 

4144.1 

-- 

4467.2 

4.476 3 

4467.2 

4469.1 

4470.3 

[dent i f  iec 
dave$ene;tk 

I 

(4-1 

4255.28 

4379.96 

4379.56 

4379 96 
4143- 

4147 

4467.64 

4477 2 8  

4466 .p 

4469.20 

4470.65 

Yulti- 
p l e t  

101 

1M 

102 

102 

106 

87 

87 

94 

94 

94 

Trans it ion 
? ina l  I n i t i d  
-.- -- 

3d' 2G - 4f1 2H" 
1 2 0  3d' 2D - 4f F 

1 2 0  3d' 2D - 4f F 

l a o  3d' 2D - 4f F 

3p 6 P  - 3d D 6 0  

3d a P  - 4f "Do 

3d 'P - 4f 'Do 

3s - 3p "P 

3s . =so - 3p 6 P  

3s %O - 3p gP 

Jf - Ji 



m 

-~ 
3760.8 

3755.8 

3758.4 

3792 4 

3774.8 

3811.7 

3704.2 

3699.5 

3 m . 6  

3721.7 

3713 3 

3721.5 

3709 1 

4463.1 

4449.2 

4435.6 

4476.3 

0 

.--_ --- 

3760.95 

3755.73 

3758 2 7  

3792 33 

3775.07 

38U.04 

3704.40 

3699.75 

3396.41 

3721.95 

3713.50 

3722.97 

3710 59 

4462.76 

4449.06 

4435.60 

4476.30 

2 0  

Table 2 .  Wavelengths and Transitions of Lines Observed i n  
Ionization Sta te  o 111. 

Line 
N o  

17 

16 

18 

3 

2 

1 

6 

5 

7 

4 

70 

68 

67 

74 - 

- 
Measured Identified 

vIulti- 
p l e  t 

2 

2 

2 

2 

2 

2 

2 1  

2 1  

2 1  

21 

2 1  

21 

2 1  

33 

33 

33 

37 

.--_ 

Transition 
F ina l  I n i t i a l  
--_I_-p- 

3s 3P0 - 3p 3D 

3s P - 3p D 

D 

D 

D 

3s 3P0 - 3p 3D 

3 0  ;r 

3 3s "PO - 3p 

3s "PO - 3p 

3s "PO - 3p 

3 

3 

sDo 3s P - 3p 

Do 3s P - 3P 

5 

5 

3s 5P - 3P Do 

3s 'P - 3p "Do 
6 0  3s "P - 3P D 

3s 'P - 3p DO 

3s 5P - 3p 'Do 

3P ' S o  - 3d 5P 

3P 'So - 3d 'P 

3p 'So - 3d 5P 

3p 'Do - 3d ID 

Jf - Ji 

2 - 3  

1 - 2  

0 - 1  

2 - 2  

1 - 1  

2 - 1  

3 - 4  

2 - 3  

1 - 2  

3 - 3  

2 - 2  

2 - 1  

1 - 0  

2 - 3  

2 - 2  

2 - 1  

2 - 2  



2 1  

Table 3. Wavelengths and Transit ions of Lines Observed i n  
Ionizat ion S t a t e  0 I V .  

Measured 

3737 6 
l1 I 

3729.9 

3726.6 

8 3726.6 
- -  

Ident i f ied 
davebength 

( A) 

3737.84 

3730.09 

3726.88 

3726.88 

Multi- 
p le t  

6 

6 

6 

6 

Trans it ion 
F ina l  I n i t i a l  

3p 'D - 3d 'F" 

3p 'D - 3d 4F0 

3p 4D - 3d 'FO 

3p 'D - 3d 'FO 

Jf - Ji 
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Table 5. Relative Populations of Levels as a Function of Energy. 

(MeV) 
- 
Lint 
No - 

51 

54 

50 

I2 

9 

29 

27 

34 

36 
39 

43 

42 

49 

0.20 
-- 

2.5 

1.3 

1.4 

0.9 

0.8 

0.6 

0.6 

0.6 

N' at I 

0.40 
- 
-- 

4.0 

2.4 

2.0 

1.3 

1.1 

2.5 

0.9 

1.3 

0.7 

rt iclc 

0.50 

7.3 

7.3 

5.6 

6.1 

2.6 

2 .o 

1.8 

4.0 

1.2 

1.7 

1.4 

0.9 

0.63 

2.8 

4.5 

2.2 

1.4 

1.0 

1.6 

1.4 

0.9 

0.75 

1.6 

0.9 

1.0 

1.1 

0.8 

0.87 

0.9 

1.00 

0.7 



Table 5.---Continued. 
25 

Line 
No - 

15 

13 

17 

16 

3 

2 

1 

6 

5 

11 

10 
- 

I n i  ti a1 
Level 

0 I11 

3P 3D3 

3P 3D2 

3~ 34 
3~ 

3p "Di 

3p 'D; 

3p 

3p "D; 

3p 'D: 

0 IV - 
3d '%12 
3d 4F07/2 

- 
0.20 

0.8 

0.5 

1 . 3  

0.9 

0.5 

0.3  

1.2 

0.8 

- 

N' at 
0.40 
-- 

2.2 

1.4 

5.2 

3.4 

1.6 

1.1 

3.0 

2 .o 

art ic: 
0.50 

3 -2 

2 .3  

7.6 

5.5 

2.6 

2 -2 

1.8 

5 -6 

3.8 

2.0 

Energ 

0.63 

3 06 

2.1 

6.6 

6.8 

2.6 

1.7 

1.4 

4.9 

3.1 

1.8 

2.1 

(Me1 

0.75 

3.1 

2.2 

6 . 3  

5 -4 

2.7 

2 .o 

0.9 

4.7 

3.7 

2.8 

2.5 

0.87 

2.3 

1.3 

4.0  

1.8 

1.2 

3.5 

2.5 

2.2 

1.8 

1.00 

1.8 

1.0 

2.9 
1.6 

0.8 

0.6 

2 .o 

1.7 

2.3 

1.9 



0 

Line 
No. 

50 

54 

51 

12 

27 

29 

36 
34 

39 

43 

42 

49 

13 

15 

1 

2 

3 

* 

26 

N' x 10 -- Energy above 
Ground Level of 

(2s + 1)(2 J + 1) Level 0 I1 (cm-l) 
- 
0 I1 

4 0  

- 
208,346 6 *9 

208,393 4.6 
3P p1/2 

4 0  

3~ p3/2 

3p  PO^/^ 208,484 3.0 

3~ 212,l62 3.8 

214,169 5 .O a o  
3P P1/2 

214,229 3.3 3 0  
3~ P3/2 
3d 'F512 231 350 1.7 

231,350 0.44 4 

3d ~ 9 / 2  

232,754 0.35 4 
3d D7/2 

252,608 0.87 

3d' "C712 252,609 0.87 
9/2 

3d' aG 

4f 'G;12 255,984 0.43 

0 I11 - 
577,552 1-5 

577,772 1.5 

3 3~ D2 
3 3~ D3 

649,170 0.72 

3P "D; 649,270 0.63 

3p 649,347 0.58 

6 0  
3P D2 

0 IV - 
3a 'qI2 I,221,997 0.50 

Table 6 .  "Non-degenerate State Populations" of Transitions 
Observed With 0.50 MeV Par t ic les .  

0 

0 



d o ?  
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Line 
No. 

1 

5 

2 

6 

13 

Table 7. Comparison of Ratios of Line Strengths t o  Ratios of 
Powers for Selected Lines. 

Trans it ion 
Fina l  Initial 

3s 6P1 - 3p 'D: 

3s 'P2 - 3p 'Dg 

3s 6P2 - 3~ 'Do3 
3s 6P3 - 3p '003 
3s "P; - 3p 'D2 

--I-- 

3s 'P; - 3p 

l7 I 

Line 
Strength 

(relat ive)  

19.4 

32 04 

51.9 

53.6 

20.0 

30.0 

Ratio of 
Line 

Strength2 

0.60 

2.00 

3.00 

0.67 

Average 
Ratio of 
Powers 

0.67 

1.50 

2 -75 

0.84 
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